

Heterocyclic Chemistry

Indole and Isoindole

SAYANWITA PANJA
DEPT. OF CHEMISTRY
SHAHID MATANGINI HAZRA GOVT. GENERAL DEGREE
COLLEGE FOR WOMEN

Introduction

- * As a result of the fusion between benzene ring and 5-memebered heterocyclic ring there are two possible aromatic structures differ in position of fusion:
- (a) Indole and its analogs

 $\mathbf{X} =$

Indole

N

Benzo[b]thiophene

S

Benzo[b]furan

(b) Isoindole and its analogs

Isoindole

Benzo[c]thiophene

Benzo[c]furan

Resonance structures of indole and its analogs

❖It appears from these resonance structures that all C atoms bear - ve. charge while the hetero atom bears + ve. charge

Synthesis of Indole

1. Fischer Synthesis

2. Madelung Synthesis

$$\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

Comparison with pyrrole

- * Pyrroles, indoles and isoindoles have a partially positive nitrogen, and partially negative carbons therefore these carbons react easily with electrophilic reagents, and resist substitution by nucleophilic reagents.
- * Indoles, like pyrroles are non basic due to if protonation on nitrogen occurs, the aromaticity would be lost. Similar to pyrrole protonation occurs at ring carbons
- The main differences between indole and pyrrole include:
- 1. The reactivity order in the electrophilic substitution
- 2. the regioselectivity in electrophilic substitution

. The reactivity order in the electrophilic substitution

- * Generally indole and its analogs are less reactive compared to the corresponding single heterocyclic rings therefore the electrophilic aromatic substitution is slower with these compounds
- *This can be attributed to the fact that the share of each carbon atom of the -ve charge in these compound is lesser due to delocalization of the charge on the benzene (as appeared from the resonance structure of indole.

Reactivity order in electrophilic aromatic substitution:

2. The regioselectivity in E. substitution

- * Fusion of the benzene ring with heterocyclic rings alter the regioselectivity from the α position in the single heterocylic compounds (e.g. pyrrole) to β position in indole
- * This β preference in case of indole can be attributed to the extra stability experienced by the cations resulted from β attack (cation I) over that resulted from a attack (cation II). Where the attack at the β position does not disturb the aromaticity of the benzene ring thus the +ve. charge in the intermediate is delocalized round the benzene ring and gets more stabilization.

2. The regioselectivity in E. substitution

Electrophilic substitution reactions

1 - Protonation

2- Nitration

Electrophilic substitution reactions

3- Halogenations

$$\begin{array}{c|c}
 & I_2 \\
\hline
 & N \\
\hline
 & N \\
\hline
 & Dioxan/0°C
\end{array}$$
Br

Br

Br

Br

Br

Dioxan/0°C

4- Sulphonation

Pyridine / heat
$$\begin{array}{c}
SO_3 \\
H^+
\end{array}$$

$$\begin{array}{c}
SO_3 \\
H^+
\end{array}$$

$$\begin{array}{c}
SO_3 \\
CH_2N_2\\
SO_3Me
\end{array}$$

I-Electrophilic substitution reactions

5- Acylation

6- Alkylation

1,2,3,3-Tetramethyl-3*H*-indolium iodide

II-Nucleophilic substitution

Nucleophilic substitution

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Oxidation of Indole

$$\begin{array}{c} \text{NBS} \\ \text{N} \\ \text{N} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{NBS} \\ \text{N} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{NBS} \\ \text{N} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{NBS} \\ \text{N} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{OH} \\ \text{N} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{OH} \\ \text{Oxindole} \end{array}$$

Reduction of Indole

Diels Alder Reaction

*Indole and its analogs do not undergo D.A.R. while isoindole and its analogs do thus this reaction is used to differentiate between these compounds.

Thank You