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Atomic Structure 

What is an atom? 

Smallest particle of an element that has all the properties of that element is called atom. 

Dalton’s atomic theory 

1) All elements are composed of tiny indivisible particles called atom. 

2) The atom can neither be created nor be destroyed i.e., it is indestructible. 

3) All atoms of an element are identical but atoms of different elements vary in size and 

mass. 

4) Atoms of different elements combine in simple whole number ratios to form chemical 

compounds. 

5) In a chemical reaction atoms are combined or separated but never changed to atom of 

another element. 

Drawbacks: It fails to explain why atoms of different kinds should differ in mass and 

valency etc. The discovery of isotopes and isobars showed that atoms of same elements may 

have different atomic masses (isotopes) and atoms of different kinds may have same atomic 

masses (isobars). 

Fundamental sub-atomic particles: 

The discovery of various sub-atomic particles like electrons, protons, neutrons etc. led to the 

ideal that the atom was no longer an indivisible and the smallest particle of the matter. 

The existence of electrons in atoms was first suggested, by J.J. Thomson. The conduction of 

electricity through gases at low pressures and at high voltage, which produces cathode rays 

consisting of negatively charged particles, named as electrons. The e/m ratio for cathode rays 

is fixed whose value is 1.76 x 108 C/g.  

The existence of positively charged particles was confirmed by Goldstein in his discharge 

tube experiment with perforated cathode. On passing high voltage between the electrodes of a 

discharge tube, some rays were coming from the side of the anode which passed through the 

holes in the cathode. These anode rays (canal rays) consisted of positively charged particles 

formed by ionization of gas molecules by the cathode rays. The charge to mass ratio (e/m 

value) of these particles was found to be maximum when the discharge tube was filled with 

hydrogen gas, the lightest element. These positively charged particles are called protons.  

The electrically neutral charge particle, neutron was discovered by James Chadwick by 

bombarding boron or beryllium with α-particles. 

Be��  + He��  → C�	�  + n�	  
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Characteristics of the three fundamental particles: 

 Electron Proton Neutron 

Sumbol e p n 

Approximate relative mass 1/1836 1 1 

Approximate relative charge -1 +1 No charge 

Mass in kg 9.109 x 10-31 1.673 x 10-27 1.675 x 10-27 

Mass in amu 5.485 x 10-4 1.007 1.008 

Actual charge (coulomb) 1.602 x 10-19 1.602 x 10-19 0 

Actual charge (e.s.u.) 4.8 x 10-10 4.8 x 10-10 0 

The atomic mass unit (amu) is 1/12 of the mass of an 6C
12 atom = 1.660 x 10-27 kg. 

 

Atomic Models 

Rutherford's model: Nuclear model 

Rutherford's α-particle scattering experiment: 

 

Rutherford performed experiments on the scattering of alpha particles by extremely thin gold 

foils and made the following observations: 

(i) Most of the α-particles pass through the foil straight away undeflected. 

(ii) Some of them are deflected through small angles. 

(iii) A few α -particles (1 in 1000) are deflected through the angle more than 90°. 

(iv) A few α -particles (very few) returned back i.e. deflected by 180°. 

(v) Distance of closest approach (Nuclear dimension) is the minimum distance from the 

nucleus up to which the α-particle approaches (r0). When the α-particle approaches close to 

the nucleus, its direction is reversed at a stage when its kinetic energy is just balanced by 

potential energy. 

 (vi) Impact parameter (b): The perpendicular distance of the velocity vector (�
 ) of the α-

particle from the centre of the nucleus when it is far away from the nucleus is known as 

impact parameter.  
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Conclusion:  

 

(1) Most of the mass and all of the positive charge of an atom concentrated in a very small 

region is called atomic nucleus. 

(2) Dimension of the nucleus is extremely small in comparison to the size of the atom. Its size 

(radius) is of the order of 10-15 m ~ 1 Fermi. Most part of the atom is empty. 

(3) Electrons are present outside the nucleus and the number of electron is equal to the 

nuclear positive charge to maintain electrical neutrality of the atom. 

(4) Electrons revolve around the nucleus in a circular orbit in the same way as the planets 

revolve around the sun. The centrifugal force and electrostatic force balance each other to 

give a stable orbit: 
���

�  = 
���

������ 

 

Draw backs: 

(i) Stability of atom: It could not explain stability of atom because according to 

electromagnetic theory an accelerated charged particle should continuously radiate energy. 

Thus, an electron moving in a circular path around the nucleus should also radiate energy and 

thus move into smaller and smaller orbits of gradually decreasing radius and it should 

ultimately fall into nucleus. 

(ii) According to this model the spectrum of atom must be continuous where as practically it 

is a line spectrum. 

(iii) It did not explain the distribution of electrons outside the nucleus. 
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Atomic Spectrum 

If the atom gains energy the electron passes from a lower energy level to a higher energy 

level, energy of specific wave length is absorbed. Consequently, when electron come back 

from a higher energy level to a lower energy level, energy of specific wave length is released. 

That means a specific wave length is absorbed or released, a dark line will appear in the 

spectrum. This dark line constitutes the atomic spectrum (absorption or emission spectrum). 

Types of emission spectra 

(i) Continuous spectra: When white light from any source such as sun or bulb is analysed by 

passing through a prism, it splits up into seven different wide bands of colour from violet to 

red (like rainbow). These colours also continuous that means each of them merge into the 

next. Hence the spectrum is called as continuous spectrum. 

(ii) Line spectra: When an electric discharge is passed through a gas at low pressure light is 

emitted. If this light is resolved by a spectroscope, it is found that some isolated coloured 

lines are obtained on a photographic plate separated from each other by dark spaces. This 

spectrum is called line spectrum. Each line in the spectrum corresponds to a particular 

wavelength. Each element gives its own characteristic spectrum.  

 

 

Hydrogen Spectrum and Spectral Series 

If an electric discharge is passed through hydrogen gas taken in a discharge tube under low 

pressure H-atom become excited to higher energy state. When, come back to ground lower 

energy state it emits radiation which is analysed with the help of spectrograph. It is found to 

consist of a series of sharp lines in the UV, visible and IR regions. This series of lines is 

known as line or atomic spectrum of hydrogen. The lines in the visible region can be directly 

seen on the photographic film. Each line of the spectrum corresponds to a light of definite 

wavelength. The entire spectrum consists of six series of lines each series, known after their 

discoverer as the Balmer, Paschen, Lyman, Brackett, Pfund and Humphrey series.  
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The wavelength of all these series can be expressed by a single formula. 

	
� = �̅ = R[

	
���

− 	
���

] 

Where, λ = wave length, �̅ = wave number, R = Rydberg constant (109678 cm-1) and n1 and 

n2 is integer define various energy levels. 

 

 

Spectral Series: 

	
� = R[

	
���

− 	
���

] or λ = 
������

 (���"���) = 
���

$(	" %��
%��

)
 

When n1 = n and n2 = (n+1), λ = λmax = 
��(�&	)�
(��&	)$  and when n1 = n and n2 = ∞, λ = λmin = 

��
$  

Series n1 n2 λmax λmin Region 
Lyman 1 2, 3, 4...∞ 4

3R 
1
R Ultra Violet 

Balmer 2 3, 4, 5...∞ 36
5R 

4
R Visible 

Paschen 3 4, 5, 6...∞ 144
7R  

9
R Infra Red 

Bracket 4 5, 6, 7...∞ 400
9R  

16
R  Infra Red 

Pfund 5 6, 7, 8...∞ 900
11R 

25
R  Infra Red 

Humphrey 6 7, 8, 9...∞ 1512
13R  

36
R  Infra Red 
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Bohr’s Model 

Bohr proposed a model for hydrogen atom which is also applicable for some lighter atoms in 

which a single electron revolves around a stationary nucleus of positive charge Ze (called 

hydrogen like atom) 

Bohr's model is based on the following postulates: 

(1) Electron can revolve only in certain specified orbits around the nucleus, for which total 

angular momentum of the revolving electrons is an integral multiple of 
1

�π, i.e., 
�1
�π = L = mvr 

where n = 1, 2, 3, ..... = principal quantum number. 

(2) When an electron is revolving in a permitted orbit, it will neither accept nor radiate any 

energy. This situation is called stationary state and orbits are called stationary orbits. 

(3) When an electron jumps from one permitted orbit to another it radiates energy of certain 

frequency. When electron jumps from higher energy orbit (E1) to lower energy orbit (E2) then 

difference of energies of these orbits i.e. E1 – E2 emits in the form of photon. But if electron 

goes from E2 to E1 it absorbs the same amount of energy. The frequency (υ) of the radiation 

will be given by the relation: E1 – E2 = hυ 
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Radius of the Bohr orbit 

For an electron in an orbit of radius r around a nucleus with Z units of positive charge, then 

centrifugal force will be balanced by electrostatic force. 

 
23�

4  = 
56�
4�  or, mv2 = 

56�
4  or, (mv)2 = 

256�
4   ..............(1) 

At the same time, Bohr condition of angular momentum requires mvr = 
�7
�� or, mv = 

�7
��� 

From equation (1), 
��7�

�π��� = 
256�

4  or, r = 
��7�

�9�2��� (in CGS) and r = 
:���1�
9256� (in SI) 

This is the desired expression of the radii of the permitted Bohr orbits. 

For H atom, Z = 1. The radius of the smallest possible orbit (r0) will be when n = 1. 

r0 =  
:�1�

926� = 
;.;=� > 	�?��@�A?�2?� > (�.��� > 	�?BC)�D�E�

F.	�	 > �.	�� > 	�?B�GH > (	.��� > 	�?�I)�@�  = 5.293 x 10-11 m (0.05293 nm). 

This is the radius of first Bohr orbit (a0). Clearly, r� = r� x 
��
5 . The value of the first Bohr 

radius of the hydrogen atom, i.e., 0.05293 nm is by definition the atomic unit of length, called 

Bohr. 

 

Velocity and orbital frequency of an electron 

The speed (v) of an electron in Bohr orbit can simply be written as,  

v = 
�1

�924 or v = 
�1

�92 x 
4π2mLM2

N2ℎ2  = 
�9LM2

�7  (in CGS) and v = 
LM2

�ε0�7 (in SI) 

The orbital frequency (f) of an electron is = 
6Q6RS4T� EU66V

RW4RX2Y646�R6 TY S16 T4ZWS = 
�

�9� = 
4π2mL2M4

N3ℎ3  
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Energy of an electron in a Bohr orbit 

An electron in an atom possesses (i) kinetic energy by virtue of its motion and (ii) potential 

energy due to its attachment to the nucleus. The total energy is the sum of these two energies. 

Kinetic energy: Ek = ½mv2 = 
56�
�4  

Potential energy: The potential energy of an electron in an atom is calculated with reference 

to its position at infinity from the nucleus. At this point potential energy is assigned zero. The 

potential energy is then given by the total work done in bringing the electron from infinity to 

its position in the orbit of radius r. The force involved is the Coulombic force of attraction by 

the nucleus, 
LM2
[2 . The work done (W) and hence the potential energy (Ep) is then given as: 

Ep = W = \ 56�
4�

4]4
4]^  = – 

LM2
[  

Now, the total energy of the electron, E = 
56�
�4  – 

56�
4  = – 

56�
�4   

Or, E = – 
56�

�  x 
�9�2���

��7�  = – 
�9�2���C

��7�  (in CGS) and E = – 
2���C

;�����7� (in SI) 

The negative sign implies that work has to be done to remove the electron away from the 

nucleus. That means that electron is actually bound to the atomic system by a definite amount 

of energy. If the electron is to be removed from the influence of the nucleus, work equal to 

the magnitude of E has to be done on it.  Due to negative sign of E, the energy of the electron 

increases with increasing value of n. Thus an orbit with a higher n value corresponds to 

higher energy of the electron.  

The energy of an electron in the first Bohr orbit of hydrogen (n = 1, Z =1) will be: 

E = – 
2���C

;�����7� = – �.	�� > 	�?B�GH > (	.��� > 	�?�I)C@C
; > (;.;=� > 	�?��)�@CA?�2?C > (�.��� > 	�?BC)�D�E� = -2.18x10-18 J = -13.6 eV. 

This is often called the ground state energy.  The energy of any other orbit having principal 

quantum number n is given as: En = – 
2���C

;�����7� = – 
2���C
;���7�  x 

	
�� = – 

_�
�� = – 

	F.�
��  

And for other hydrogenic species, En = – 13.6 ��
�� 
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Interpretation of the spectrum of atomic hydrogen 

Consider two orbits with quantum numbers n1 and n2 in a Bohr type atom, such that n2 > n1. 

Let the corresponding energy values be `��  and `��  where `��  > `��  

So, the energy difference between these two levels will follow the equation below (Z =1):  

`��  - `��= hν = 
��C

;���7� [ 	
���

−  	
���

] or, υ = 
��C

;���7B [ 	
���

−  	
���

]  and �̅ =  	
� =  ��C

;���e7B [ 	
���

−  	
���

] 
Substituting the value of m, e, ε0, c and h, �̅ = 1.096775 x 107 [ 	

���
− 	

���
] m-1 

This expression agrees excellently with the experimentally established relation of Rydberg 

for the spectrum of atomic hydrogen: �̅ = R [ 	
���

−  	
���

] where R = 1.096775 x 107 m-1. 

Bohr correspondence principle 

Though the wave numbers of spectral lines were given by the Bohr’s theory, no inference 

regarding the nature and intensity of the lines could be made from it. Bohr, therefore, 

established a principle linking the classical theory and quantum theory. The principle states 

that for large quantum numbers, the behaviour of the atom would be same as predicted by 

both the quantum theory and classical theory. Accordingly, for very large values of n, the 

frequencies of the emitted radiation are nearly the same as the orbital frequency.  

We know, the orbital frequency (f) of an electron is = 
6Q6RS4T� EU66V

RW4RX2Y646�R6 TY S16 T4ZWS = 
�

�9�  

                                                                            Or, f = 
LM2

2ε0�7 x 
	

�9  x πmZe2
ε0n2h2 = 

����C
�����B7B 

Now, let us consider the frequency (υ) of radiation for the transition from ni to nf where n is 

very large value of principal quantum number. υ = 
�L2�C
;���7B [ 	

�i�
−  	

�j�
] Let us consider, ni = n and 

nf = n - p where p = 1, 2, 3, .....  Hence, υ = 
�L2�C
;���7B [ 	

(n−p)2 −  	
n2] or, υ = 

�L2�C
;���7B [ �U�" p2

n2(n−p)2]  

Now, if n>>p, then 2pn – p2 ≈ 2pn and (n-p)2 ≈ n2. Thus, υ = 
�L2�C
;���7B (�U

n3). For p = 1, f = υ. 
Therefore, the frequency of radiation is equal to the frequency of revolution.  
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Merits of Bohr’s theory 

(i) The experimental value of radii and energies in hydrogen atom are in good agreement with 

that calculated on the basis of Bohr’s theory. 

(ii) Bohr’s concept of stationary state of electron explains the stability of atoms and the 

emission and absorption spectra of hydrogen like atoms. 

(iii) The experimental values of the spectral lines of the hydrogen spectrum are in close 

agreement with the calculated by Bohr’s theory. 

Limitations of Bohr’s Theory 

(i) Bohr introduces an integer (n) in selecting the stable orbits for electrons arbitrarily. There 

was no theoretical justification for it.   

(ii) It does not explain the spectra of atoms or ions having more than one electron. 

(iii) Bohr’s atomic model failed to account for the effect of magnetic field (Zeeman effect) or 

electric field (Stark effect) on the spectra of atoms or ions. It was observed that when the 

source of a spectrum is placed in a strong magnetic or electric field, each spectral line further 

splits into a number of lines. This observation could not be explained on the basis of Bohr’s 

model. 

(iv) de-Broglie suggested that electrons like light have dual character. It has particle and 

wave character. Bohr treated the electron only as particle. 

(v) Another objection to Bohr’s theory came from Heisenberg’s Uncertainty Principle. 

According to this principle “it is impossible to determine simultaneously the exact position 

and momentum of a small moving particle like an electron”. But in Bohr’s model, electrons 

revolve in well defined orbits around the nucleus with well defined velocities. So, it is not 

attainable. 
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de Broglie hypothesis: 

In quantum theory, the energy of photon of frequency v is related as, E = hv. According to 

the Einstein’s law of mass-energy equivalence, E = mc2. Comparing the above two equations, 

mc2 = hv or, mc = h 3R or, mc = 
1
� or, p =  

1
� 

Thus, momentum of photon (p = mc) is related with its wavelength (λ) as p = 
1
�. 

In other words, the fundamental law of relativity gives the relation E = {|�}� + ���}�. Now 

for photon, the rest mass (m0) is zero. Hence, E = pc or, p = 
�
R or, p = 

13
R  = 

1
� 

The French scientist, de Broglie generalized the idea and applies equally to both photons and 

material particle. He assumed that a moving body has also associated matter wave. For a 

particle of mass m moving with a velocity v is related as λ = 
1

23 where λ is wave length of 

matter called de Broglie wave length of the particle.  

 

Wave length of a moving subatomic particle: 

The electron in a hydrogen atom moved with a velocity, v = 2.3 x 106 m s-1. Thus, the wave 

length, λ = 
1

23 = 
�.��� > 	�?BC D E

�.	 > 	�?B�  GH > �.F > 	�� 2E?�  = 3.16 x 10-10 m = 3.16 Å 

This value of wave length is comparable to that of X-rays and it is measurable as well as 

believable. 

 

Wave length of a moving macroscopic particle: 

A bullet of mass 2x10-3 kg is moving with a speed of 300 m s-1. Thus, wave length, λ will be: 

λ =  
1

23 = 
�.��� > 	�?BC D E

� > 	�?BGH > F�� 2E?�  = 1.1 x 10-33 m = 1.1 x 10-23 Å 

The value of wave length is exceeding small and not measurable. Besides this, due to this 

exceedingly high frequency, the energy of the bullet becomes so high that it is unbelievable 

in our sense. That’s why the de Broglie’s wave equation has not meaningful for macroscopic 

particle.  
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Bohr’s quantum restriction from de Broglie concept:

According to Bohr’s theory, the stationary orbits are defined by the relation, mvr = n

Now, considering wave-particle dualism, the revolving electron in a particular stationary 

orbit can be considered as a stationary wave, i.e., the position of its maxima and minimum do 

not change with time. Such wave can be obtained, if the two ends of an elec

the same phase. To satisfy this condition, the 

be an integral multiple of the wave length (

2πr = nλ or, 2πr = n	
1

U
 or, 2πr = 

define a stationary orbit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bohr’s quantum restriction from de Broglie concept: 

According to Bohr’s theory, the stationary orbits are defined by the relation, mvr = n

particle dualism, the revolving electron in a particular stationary 

orbit can be considered as a stationary wave, i.e., the position of its maxima and minimum do 

not change with time. Such wave can be obtained, if the two ends of an elec

To satisfy this condition, the circumference of the Bohr’s circular orbit must 

be an integral multiple of the wave length (λ). So,  

πr = n	
1

23
 or, mvr = n! 1

�9
# It is the Bohr’s quantum restriction to 

Page 12 

According to Bohr’s theory, the stationary orbits are defined by the relation, mvr = n	
7

��
. 

particle dualism, the revolving electron in a particular stationary 

orbit can be considered as a stationary wave, i.e., the position of its maxima and minimum do 

not change with time. Such wave can be obtained, if the two ends of an electron wave meet in 

circumference of the Bohr’s circular orbit must 

t is the Bohr’s quantum restriction to 
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The uncertainty principle:  

Considering wave-particle dualism of matter, W. Heisenberg stated: it is not possible to 

determine simultaneously both position and the momentum of a body with any arbitrary 

desired accuracy. In other words, it is impossible to know both the exact position and exact 

momentum of an object at the same time. Mathematically, uncertainty principle as follows: 

Δx.Δp ≥ 
1

�9 

where Δx and Δp represent the uncertainties in determining the position and momentum of 

the particle respectively at the same time. The relation indicates that the product of two 

uncertainties is approximately of the order of Planck’s constant. Thus, a certainty in one 

quantity introduces an uncertainty in its conjugate quantity.  

The uncertainty in determining the velocity can be obtained as follows: 

Δx.Δp ≥ 
1

�9 or, Δx.mΔv ≥ 
1

�9 or Δx.Δv ≥ 
1

�92 

 

Uncertainty in energy and time: 

The uncertainty relation holds between any two conjugate properties like energy and time. If 

Δt and ΔE is the uncertainty in time and energy measurement then ΔE.Δt ≥ 
1

�9 

Suppose, we want to measure energy, E of a free particle moving with a velocity v in the x-

direction. The energy, E is equal to the kinetic energy of the particle:  

E = 
	
� ���  or, E = 

��
��  (m = mass and p = momentum) 

Or, ΔE = 
�U
�2Δp or, ΔE = �

�Δp or, ΔE = v.Δp 

But, velocity v = 
VWEUQ�R626�S

SW26  = 
�>
�S  

So, now ΔE = 
�>
�S Δp or, ΔE.Δt = Δx.Δp. Therefore, ΔE.Δt ≥ 

7
�� 

 

� Consider a ball of mass 2 g whose uncertainty in position is equal to 10-8 cm. Hence, 

the corresponding uncertainty in its velocity would be: 

Δv = 
1

�92.�> = 
�.��� > 	�?BC D E

� > F.	� > � > 	�?B GH >  	�?�� 2  = 0.26 x 10-21 m s-1. 

This uncertainty is definitely negligible to the usual velocity of the ball.  
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� Consider position of the electron from the nucleus can be determined with uncertainty 

of 4 pm i.e., 4x10-12 m. Hence, the corresponding uncertainty in defining the velocity would 

be: Δv = 
1

�92.�> = 
�.��� > 	�?BC D E

� > F.	� > �.	 > 	�?B� GH >  � > 	�?�� 2  = 1.45 x 107 m s-1 

Now, this uncertainty in velocity is huge and even more than that the velocity of electron in 

the first Bohr’s orbit. Thus, this principle strikes at the fundamental root of the Bohr’s 

concept to have the existence of well defined orbits. 

 

An electron can’t exist in the nucleus: 

A typical nucleus have radius less than 10-14 m. Hence, an electron to exist in the nucleus, its 

uncertainty in position can’t exceed the limit, 10-14 m i.e., Δx = 10-14 m. So, the 

corresponding uncertainty in its momentum will be: 

Δp = 
1

�9.�> = 
�.��� > 	�?BC D E

� > F.	� > 	�?�C 2  = 0.55 x 10-20 kg m s-1. This is the minimum uncertainty of 

momentum. Now, if an electron possesses a momentum of the order of 10-20 kg m s-1, its 

classical kinetic energy (p2/2m) becomes much greater than the rest mass energy (m0c2). 

Under such condition, the relativistic kinetic energy = pc = 0.55 x 10-20 x 3 x 108 m s-1 

                                                                                  = 1.65 x 10-12 J = 10.3 MeV 

Therefore, it concludes that, if the electron is to be considered as a nuclear constituent, it will 

have energy at least more than 10.3 MeV. But, experimentally, it has been established that 

even for the most unstable atoms, an electron can never get associated with more than a 

fraction of this energy. Based on this, it can be firmly concluded that an electron can’t exist in 

a nucleus.  
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Schrodinger wave equation 

E. Schrodinger introduced a mathematical concept of wave-particle dualism to the electron in 

an atom by considering the electron as a standing wave as in the case of a vibrating string 

fixed at both ends. This mathematical expression is called Schrodinger wave equation. The 

equation can be applied to many cases such as to the electrons to describe the atomic model, 

to the harmonic oscillators to define their energy levels, to the diatomic molecules to define 

their rotational and vibrational energy levels etc. The equation with respect to space can be 

written in the Cartesian coordinate system for stationary waves (time independent) as follows 

���
���  + 

���
���  + 

���
���  + 

;���
7�  (E-V)Ψ = 0 

Here Ψ is called wave function. Ψ represents the amplitude of the matter associated with the 

particle at various points defined by x, y, z space coordinates, m  stands for mass of the 

particle, h is the Planck constant, E represents the total energy while V stands for the 

potential energy of the particle at the position x, y, z.  

The above second order differential equation is very often represented as: 

��Ψ + 
;���

7�  (E–V)Ψ = 0 where �� = 
��

��� + 
��

��� + 
��

��� 

The term �� is called Laplacian operator.  

The Schrodinger equation is also expressed in the following form: 

��Ψ + 
;���

7�  (E–V)Ψ = 0 Or, –��Ψ + 
;���

7�  VΨ = 
;���

7�  EΨ 

Or, [– 
7�

;��� �� + V]Ψ = EΨ Or, [– 
ħ�

�� �� + V]Ψ = EΨ     (where ħ = h/2π) 

Or, ĤΨ = EΨ where Ĥ = [– ħ�
�� �� + V] called Hamiltonian operator which is a function of 

various coordinates and potential energy. 

 

Physical significance of the wave function: 

The wave function(Ψ) has no physical significance as it is not associated with any physical 

wave. It is an abstract mathematical entity though it provides information on physical 

quantities which may be verified experimentally.  

On the other hand Ψ2 bears a meaningful significance. In classical mechanics, the square of 

amplitude of the wave associated with electromagnetic radiation is interpreted as a measure 

of intensity effect at any point. ΨΨ* or Ψ2 may be used as a measure of density of electric 

charge or particle at a particular point. 
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Another statistical interpretation of ΨΨ* or Ψ2 was given by Max Born where ΨΨ*τ or Ψ2dτ 

is considered as a measure of probability of finding particle in small volume dτ (dx.dy.dz) at 

a particular point. Thus, Ψ2dτ is proportional to the probability of finding particle in the 

volume dτ. The total probability over the whole space is unity, i.e., \ ��∗&^
"^ dτ = 1 

Ψ may be both real and complex. If Ψ is complex then Ψ2 will contain a imaginary term 

which have no physical significance. In such cases ΨΨ* is to be considered where Ψ* is the 

complex conjugate of Ψ, [if Ψ = (a + ib) then Ψ* = (a – ib)]. If Ψ is real then Ψ = Ψ* and thus 

ΨΨ* becomes Ψ2. This is why in general ΨΨ* are considered for interpretation. 

 

Eigen function and Eigen values:  

The time independent Schrödinger equation can be written as ĤΨ = EΨ where Ĥ is 

Hamiltonian operator or energy operator since it yields energy of the system when applied on 

Ψ. In general, when an operator Ȃ, operates on a function Ψi, to give back the function 

multiplied by some constant ai, that is,  

ȂΨi =  aiΨi  [operator (function) = constant x same function] 

Then, Ψi is an eigen function of the operator Ȃ and ai is its eigen value. In the case of 

Hamiltonian operator Ĥ, Ψ(x) is an eigen function and several values of E that are obtained 

for various wave functions are eigen values.  

 

Well behaved wave function: 

The Schrodinger equation provides many solution of a system but many of them have no 

physical reality. Only those solutions give information on physical measurable properties of 

the system are acceptable. Such acceptable solutions for the wave function are selected 

according to the following conditions.  

1) Ψ must be single valued i.e., Ψ may have one and only one value at any point in space.  

2) Ψ must be finite. The probability density at any point in space must be finite.  

3) Ψ must be continuous. Certain properties like momentum are calculated by taking the 

derivative of Ψ. If Ψ is discontinuous at a point, its 1st derivative at that point will be infinite.  

4) Ψ must be square integrable. This allows multiplication of Ψ by a constant to make it 

normalized. This means the total probability of finding a particle described by Ψ over entire 

space must be equal to unity. \ �� ��&^
"^  = 1 or \ ��∗ ��&^

"^  = 1 

** If Ψ1 and Ψ2 are two acceptable wave functions, they are orthogonal. Condition of 

orthogonality is as follows: \ �	����&^
"^  = 0 
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Schrodinger equation for hydrogen atom 

The time independent Schrodinger equation with the wave function of the electron Ψ, which 

is a function of the space coordinates x, y, z and potential energy V written as: 

 ∇�Ψ + 
;���

7�  (E–V)Ψ = 0 where ∇� = 
��

��� + 
��

��� + 
��

��� 

E is the total energy of the electron. The potential energy V of the electron at a distance r 

from the nucleus is, V = – 
��
�  or (– 

��
����� in SI). Since, V is a function of r and in Cartesian 

coordinates r = {�� +  �� +  ��. So V = – 
��

{��& ��& ��. The final Schrodinger equation will be 

��Ψ + 
;���

7�  (E + 
��

{��& ��& ��)Ψ = 0.  

But, it is more realistic to express the Schrodinger equation for hydrogen atom in spherical 

polar coordinates. Interrelation of Cartesian and polar coordinates is as follows. 

 

r = {�� +  �� + ��, θ = cos
-1 �

{��& ��& �� and φ = tan
-1 �� 

x = rsinθcosφ, y = rsinθsinφ and z = rcosθ 

Accordingly, �2
 = 

	
4�

�
�4 (r2 �

�4) + 
	

4�EW��
�

�� (sinθ �
��) 

+ 
	

4�EW��� 
��

��� 

Using the expression for �2
 and V = – 

���
� , the Schrodinger equation in transformed into 

spherical coordinates as: 

	
4�

�
�4 (r2��

�4 ) + 
	

4�EW��
�

�� (sinθ��
��) 

+ 
	

4�EW��� 
���
���  + 

;9�2
1� (E + 

56�
4 )Ψ = 0 

The wave function Ψ is a function of three variable r, θ and ϕ. The wave function can be 

express as a product of three functions R(r) or Ψ(r), Θ(θ) or Ψ(θ) and Φ(ϕ) or Ψ(ϕ) which 

depend only r, θ and ϕ respectively. 

Ψ(r, θ, ϕ) = R(r) Θ(θ) Φ(ϕ) 
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R(r) is a function of r, the radial distance from the nucleus. This is called radial part of the 

wave function or radial function. Θ(θ) is a function of θ and  Φ(ϕ) is a function of ϕ. These 

two functions represent the angular part of the wave function. They may also be combined 

into a single function Ψ(θ, ϕ).  

Ψ(r, θ, ϕ) = Ψ(r) Ψ(θ, ϕ) 

Therefore, we can write the Schrodinger equation as follows by putting Ψ = R(r) Θ(θ) Φ(ϕ): 

	
4�

�
�4 (r2 �

�4)R(r) Θ(θ) Φ(ϕ) + 
	

4�EW��
�

�� (sinθ �
��)R(r) Θ(θ) Φ(ϕ) 

+ 
	

4�EW��� 
��

��� R(r) Θ(θ) Φ(ϕ) + 

;9�2
1�  (E+

56�
4 )Ψ = 0 

By solving this equation we will get three differential equations each containing one variable. 

Φ equation: 
	

�(�)
��

��� Φ(ϕ) = – m2 

Θ equation: 
	

EW��
�

�� (sinθ �
��Θ(θ)) + (β – 

2�
EW���)Θ(θ)= 0 

R equation: 
	

$(4)
�

�� ([� �
��R(r))+

;9�2
1� (E + 56�

4 )r� = β  where β = l(l+1) 

Clearly, it is seen that the solution of Schrodinger equation leads to three quantum number 

principal quantum number (n), azimuthal quantum number (l) and magnetic quantum number 

(m) to describe the electron. For a given energy state, the radial function R(r) depends on n 

and l, Θ(θ) depends on l and m while Φ(ϕ) depends on m only. Summarily, the wave function 

are written as: Ψ (r, θ, ϕ) = Rnl(r) Θlm(θ) Φm(ϕ) 

The final solutions of these above three differential equations are as follows: 

Φ(ϕ) = 
	

√�� eimϕ where m = 0, ±1, ±2, ±3, ... and 
	

√�� is normalization constant. 

Θ(θ) = 
{(��&	)(�" |�|)!

{�(�& |�|)! ��
|�|cos(θ) where m = 0, ±1, ±2, ±3, ...±l 

R(r) = - [(
��

� �)F (�"�"	)!
��[(�&�)!]B]�

� M"¡
� ��¢�&���&	(�) where x = 

���
� � and a0 = 

7�
������ 

By putting the different values of n, l and m we finally obtained the value of Φ(ϕ), Θ(θ), R(r). 
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 n l m Θ(θ) Φ(ϕ) R(r) 

1s 1 0 0 1
√2 

1
√2π 2(

�
 �)B

� M" £¤
¥� 

2s 2 0 0 1
√2 

1
√2π 	

�√� ( �
 �)B

�  (2 − 
��
 �) M" £¤

¥� 

2pz 2 1 0 √�
� cosθ 

1
√2π 	

�√	� ( �
 �)B

�  (��
 �) M" £¤

�¥� 

2px 2 1  

±1 

 

√F
� sinθ 

	
√9cosϕ 	

�√	� ( �
 �)B

�  (��
 �) M" £¤

�¥� 

2py 2 1 √F
� sinθ 

	
√9sinϕ 	

�√	� ( �
 �)B

�  (��
 �) M" £¤

�¥� 

3s 3 0 0 1
√2 1

√2π �
;	√F ( �

 �)B
�  [27 - 18

��
 � + 2(

��
 �)�]M" £¤

B¥� 

3pz 3 1 0 √�
� cosθ 

1
√2π �

;	√� ( �
 �)B

�  [6
��
 � - (

��
 �)�]M" £¤

B¥� 

3px 3 1  

±1 

 

√F
� sinθ 

	
√9cosϕ �

;	√� ( �
 �)B

�  [6
��
 � - (

��
 �)�]M" £¤

B¥� 

3py 3 1 √F
� sinθ 

	
√9sinϕ �

;	√� ( �
 �)B

�  [6
��
 � - (

��
 �)�]M" £¤

B¥� 

3dz
2 3 2 0 ¦=

;(3cos2θ-1) 
1

√2π �
;	√F� ( �

 �)B
�  (��

 �)�M" £¤
B¥� 

3dxz  3 2  

±1 

 

¦	=
� sinθcosθ 

	
√9cosϕ �

;	√F� ( �
 �)B

�  (��
 �)�M" £¤

B¥� 

3dyz 3 2 ¦	=
� sinθcosθ 

	
√9sinϕ �

;	√F� ( �
 �)B

�  (��
 �)�M" £¤

B¥� 

3dxy 3 2  

±2 

 

¦	=
	�sin2θ 

	
√9sin2ϕ �

;	√F� ( �
 �)B

�  (��
 �)�M" £¤

B¥� 

3dx
2-y

2 3 2 ¦	=
	�sin2θ 

	
√9cos2ϕ �

;	√F� ( �
 �)B

�  (��
 �)�M" £¤

B¥� 

 

 

 

 

 

 

 

 



 

Dr. Sachinath Bera Page 20 

 

Variation of Radial wave function: 

i) All the functions contains an exponential term, M" £¤
§¥�, which decreases with r. So, R(2s) 

has slower rate of decay with r than R(1s). Thus, the wave function of an orbital with higher n 

extends to a larger distance from the nucleus.  

ii) The R-function for the 2s orbital passes through zero when (2 − 
��
 �) = 0 i.e., at r =  

� �
� , 

R(2s) = 0. The point at r = 
� �

�  represents a radial node. The function changes its sign beyond 

this point.  

iii) The orbital designated by n and l has n-l-1 number of radial nodes. Node is a surface 

where the wave function passes through zero as it changes sign.  
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Radial distribution function (RDF) 

Radial distribution function gives the idea of total probability of finding the electron in the 

spherical shell bounded by the spheres of radius r and r + dr. It measures the probability per 

unit length at the distance r. RDF is differ from the radial probability density, P(r), which 

measures the probability density per unit volume. Generally, P(r) = R(r)2 or Ψ(r)2 and RDF = 

R(r)2dv = 4πr2R(r)2dr where dv = 4πr2dr. 

Suppose, the atom is composed by concentric spheres.  Now, if dv is the volume in between 

those sphere of radius r and r + dr, then dv = 4πr2dr (where v = 4/3πr3). 

 

 

For, s-orbital, the radial probability density is maximum at the nucleus but for all other 

orbitals this probability is zero at the nucleus. However, for s-orbital, the total probability i.e., 

radial probability distribution function (4πr2R(r)2dr) is zero at r = 0 because the volume 

element dv become zero at r = 0. 
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Characteristic features of Radial distribution function: 

(i) RDF at r = 0: 4πr2R2 becomes zero at r = 0.  

(ii) Probability at r = ∞: As r → ∞, the probability tends to be zero. In practical sense, at the 

larger values of r, the probability approaches to almost zero. 

(iii) Maximum probability regions: As r increases, the probability increases and at a particular 

value of r, the probability becomes maximum then it falls down. Except the orbitals 

appearing first as 1s, 2p, 3d, 4f, in all other cases, more than one value of r, the maxima 

appear. The rmax values for different orbitals are 1s (a0), 2s (0.77a0, 5.23a0), 2p (4a0) etc.  

(iv) Intra-nodal maxima and penetrating power: For, 3s, sp, 3d orbitals, the rmax for the 

largest maximum probability region lies in the sequence rmax(3s) > rmax(3p) > rmax(3d) but, for 

3s and 3p orbitals, there are two and one additional intra-nodal maxima at lower distances 

from the nucleus. By considering these intra-nodal nodes, it is found that the 3s orbital 

electron spends a larger fraction of its time closer to the nucleus compared to 3p electron. The 

3d electron spends relatively its least time close to nucleus compared to 3s and 3p electrons. 

By combining all of these maxima the average rmax of the orbitals runs as ‹rmax(3s)› ˂ 

‹rmax(3p)› ˂ ‹rmax(3d)›. This is why, the 3s electrons are most tightly bound to the nucleus 

followed by 3p and 3d electrons.  

Again, the radial distribution functions of orbitals like 2s, 3s, 3p, 4d etc has intra-nodes that 

means the electrons of these orbital can spread into the inner orbital or comes closer to 

nucleus. This distribution into the inner core is termed as ‘penetration’. The sequence of 

penetrating power as follows: s > p > d > f.   
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Characteristic features of Angular wave functions: 

(i) Relation with quantum numbers: The angular part of the wave function is dependent on 

the two quantum numbers l and m that determine the shape of the orbitals.  

(ii) Orbital shape: All s-orbitals (l = 0) are spherically symmetrical, as angular part is not 

dependent on θ and ϕ but, other orbitals angular part dependent on θ and/or ϕ. The boundary 

surfaces of the angular part of the wave function are represented below: 

 

 

 

 (iii) Angular node: Angular node appears when the angular functions become zero and are 

planar or conical. Except the s-orbitals, for any other orbitals the angular wave function has 

zero values. The number of angular nodes for any orbital = l. The number of angular nodes 

for s, p and d-orbitals are as follows: 

s-orbital = 0; p-orbitals = 1 (plane) and d orbitals = 2 (plane) and dz
2 = 2 conical surface.    

 

 

 

 

 

 

 

 

 



 

Dr. Sachinath Bera Page 24 

 

Quantum numbers 

(1) Principal quantum number (n): 

It was introduced in Bohr’s atomic model as mvr = n(h/2π) where n = 1, 2, 3, 4, and so on. 

Significance: 

(i) Energy of the electron: In Bohr’s model energy of the electron in hydrogen like system is 

governed by the principal quantum number as follows: 

En = – 
�9�2���C

��7�  i.e., En proportional to (1/n2). The shells or energy levels are designated by 

capital letters as K (n = 1), L (n = 2), M (n = 3), N (n = 4) and so on. 

(ii) Radius of the orbital: In Bohr’s model, the position of the electron measured from the 

nucleus is governed by n as follows: rn = 
��7�

�9�2��� 

(iii) Total capacity of electron in a particular shell: The total number of electrons can be 

accommodated in a particular shell related with principal quantum number as 2n2 formulae. 

Shell: K L M N 

Max capacity:   2 x 12 2 x 22 2 x 32 2 x 42 

 

(2) Azimuthal quantum number (l): 

In Sommerfeld’s atomic model, the azimuthal quantum number (k) is originated from the 

hypothesis of elliptical locus for moving electron. But in wave mechanical model, it comes to 

make the function, Θ(θ) acceptable. k and l is related by the relation l = k-1.  The acceptable 

values of l are 0, 1, 2, ...., (n-1). It is also called angular momentum quantum number.        

Significance: 

(i) Shape of the orbit or orbital: In Sommerfeld’s model, the azimuthal quantum number 

determines the shape i.e., the ellipticity of the orbit. In the wave mechanical model, the 

angular part of the wave function gives l and m (magnetic quantum number) determines the 

shape of the orbitals. 

(ii) Naming of the orbitals: The types of the orbitals are designated by the values of the 

azimuthal quantum number as follows:                                    

l 0 1 2 3 

Orbital   s p d f 

These names are comes from spectroscopic terms sharp, principal, diffuse and fundamental. 

(iii) Number of radial nodes and nodal surfaces: The number of radial nodes of the orbital is 

given by (n-l-1) and angular nodes given by l.  
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(iv) Penetrating power of the orbit or orbital: From the ellipticity of the orbit and radial 

probability distribution in wave mechanics, the penetrating power of the orbitals in the 

sequence s > p > d > f for a particular principal quantum number.  

(v) Orbital angular momentum: The orbital angular momentum pl is quantized as follows: 


̈ = pl = l(h/2π) (classical mechanics) 

        = {¨(¨ + 1)(h/2π) (wave mechanics) 

(3) Magnetic quantum number: To have acceptable solutions of Φ(ϕ), the magnetic quantum 

number (m) comes to the picture. In vector model, it appeared to explain the Zeeman effect 

and Stark effect. The magnetic quantum number, m have values as: m = ±l, ±(l-1), ±(l-2),... 0. 

Therefore, for a particular value of l, it can have (2l+1) values. 

Significance: 

(i) Number of sub-energy levels or orbitals:  

 s-orbital (l = 0) p-orbital (l = 1) d-orbital (l = 2) f-orbital (l = 3) 
m 0 0, ±1 0, ±1, ±2 0, ±1, ±2, ±3 
 One orbital A set of three orbital A set of five orbital A set of seven orbital 

 

(ii) Shape of the orbitals: The angular part of the wave function, Θl,m(θ) x Φm(ϕ), determine 

the shape of the orbitals. Thus, l and m jointly determine the shape of the orbitals.  

(iii) Splitting of the orbitals in presence of an external field: In absence of any external field 

(magnetic or electric), the orbitals generated for different values of m having a particular 

value of l are degenerate. For example, three p-orbital (m = 0, ±1) or five d-orbitals (m = 0, 

±1, ±2). But, in presence of external field orbitals are splitted having different m values that 

explain Zeeman and Stark effect.  

 

The acceptable values of θ (angle of 
̈ with z-axis) for which 
̈ cosθ = ml (h/2π). For example, 

for d-orbital l = 2, 
̈ cosθ = 2(h/2π)cosθ = ml (h/2π) or, ml = 2cosθ. Now, θ = 0, ml = +2; θ = 

90°, ml = 0; θ = 180°, ml = -2 etc. 
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(4) Spin quantum number: 

In Dirac’s relativistic wave mechanical model, the spin quantum number appears to make the 

solutions acceptable. In vector model, the concept of a spinning electron was introduced by 

Uhlenbeck and Goudmit. It has non-integral value ½. It actually measures the angular 

momentum of the electron due to its spinning motion. In magnetic field, it has only two 

quantized orientations giving rise to the magnetic spin quantum number (ms) = ±1/2.   

Significance: 

(i) Spin angular moment: The spin angular momentum (ps) developed due to the spinning 

motion of the electron around its own axis is given by: 

©
 = ps = s(h/2π) (classical mechanics) 

        = {©(© + 1)(h/2π) (wave mechanics) 

(ii) Spectral selection rule: During electronic transition between the states, the selection rule, 

ΔS = 0 where S = resultant spin quantum number, is obeyed.    

 

 

Pauli Exclusion Principle: 

This principle states that the total wave function (Ψspin x Ψspatial) of a two electron system 

must be antisymmetric with respect to interchange of the positions of the two electrons.  

 

Familiar form of Pauli Exclusion Principle: No two electrons in a given system can have 

all the four quantum numbers identical. 
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shell n l ml ms Set of quantum no. Sub 

shell 

Total 

electron 

K 1 0 0 +½, -½ (1,0,0,+½) & (1,0,0,-½) 1s
2
 2 

 

 

L 

 

2 

0 0 +½, -½ (2,0,0,+½) & (2,0,0,-½) 2s
2
  

8 1 +1  +½, -½ (2,1,+1,+½) & (2,1,+1,-½)  

2p
6
 0 +½, -½ (2,1,0,+½) & (2,1,0,-½) 

-1 +½, -½ (2,1,-1,+½) & (2,1,-1,-½) 

 

 

 

 

 

M 

 

 

 

 

3 

0 0 +½, -½ (3,0,0,+½) & (3,0,0,-½) 3s
2
  

 

 

 

18 

 

1 

+1 +½, -½ (3,1,+1,+½) & (3,1,+1,-½)  

3p
6
  0 +½, -½ (3,1,0,+½) & (3,1,0,-½) 

-1 +½, -½ (3,1,-1,+½) & (3,1,-1,-½) 

 

 

2 

+2  +½, -½ (3,2,+2,+½) & (3,2,+2,-½)  

 

3d
10

 

+1 +½, -½ (3,2,+1,+½) & (3,2,+1,-½) 

 0 +½, -½ (3,2,0,+½) & (3,2,0,-½) 

-1 +½, -½ (3,2,-1,+½) & (3,2,-1,-½) 

 -2 +½, -½ (3,2,-2,+½) & (3,2,-2,-½) 

 

 

 

 

 

 

 

 

 

 

L 

 

 

 

 

 

 

 

 

 

4 

0 0 +½, -½ (4,0,0,+½) & (4,0,0,-½) 4s
2
  

 

 

 

 

 

32 

 

1 

+1 +½, -½ (4,1,+1,+½) & (4,1,+1,-½)  

4p
6
  0 +½, -½ (4,1,0,+½) & (4,1,0,-½) 

 -1 +½, -½ (4,1,-1,+½) & (4,1,-1,-½) 

 

 

2 

+2 +½, -½ (4,2,+2,+½) & (4,2,+2,-½)  

 

4d
10

 

 +1 +½, -½ (4,2,+1,+½) & (4,2,+1,-½) 

 0 +½, -½ (4,2,0,+½) & (4,2,0,-½) 

 -1 +½, -½ (4,2,-1,+½) & (4,2,-1,-½) 

 -2 +½, -½ (4,2,-2,+½) & (4,2,-2,-½) 

 

 

 

3 

+3 +½, -½ (4,3,+3,+½) & (4,3,+3,-½)  

 

 

4f
14

 

 +2 +½, -½ (4,3,+2,+½) & (4,3,+2,-½) 

+1 +½, -½ (4,3,+1,+½) & (4,3,+1,-½) 

 0 +½, -½ (4,3,0,+½) & (4,3,0,-½) 

 -1  +½, -½ (4,3,-1,+½) & (4,3,-1,-½) 

-2 +½, -½ (4,3,-2,+½) & (4,3,-2,-½) 

 -3 +½, -½ (4,3,-3,+½) & (4,3,-3,-½) 
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Aufbau Principle: (Building up principle) 

The orbital of lowest energy will be occupied by the electron first then the orbitals of higher 

energy will start to accommodate the electrons. 

The energy of the orbital is increases with increasing value of principal quantum number (n). 

Again, for a particular value of n, the energy sequence of the orbital is s ˂ p ˂ d ˂ f. This 

order can be explained from the penetrating power of different orbital. For a particular value 

of n, as the value of l decreases, the probability of existence of the corresponding electron at a 

closer distance towards the nucleus increases experiencing greater attraction by the nucleus 

and consequently energy is decreases with decrease of l value. 

(n + l) rule:  

(a) The energy of the orbitals increases with increasing value of (n + l). 

(b) For same value of (n + l), energy increases with increase of n. 

Energy: 1s ˂ 2s ˂ 2p ˂ 3s ˂ 3p ˂ 4s ˂ 3d ˂ 4p ˂ 5s ˂ 5p ˂ 6s ˂ 4f ˂ 5d ˂ 6p ˂ 7s 

(n + l):    1 ˂ 2  ˂  3  ~  3 ˂  4  ~  4  ˂  5  ~  5  ~ 5  ˂ 6  ~ 6   ˂ 7  ~  7   ~ 7  ~ 7  

This generalization is valid only for the one electron wave function for each separate orbital. 

It is seen that this energy sequence is strictly followed by the lighter elements. But, for 

heavier elements, with the increase of effective nuclear charge, the sequence becomes 

modified. Generally, with the increase of effective nuclear charge, the energy of the orbitals 

falls in different extent.  
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Exception of (n + l) rule: 

(i) Anomaly for elements, Z = 57-58: Ba (Z = 56), configuration is [Xe]6s2. La (Z = 57) 

should have configuration [Xe]4f16s2, but it is [Xe]4f05d16s2. 

(ii) Anomaly in energy order of 5f and 6d in the range of Z = 90: Ra (z = 88), configuration is 

[Rn]7s2. Ac (Z = 89) should have configuration [Rn]5f16d07s2, but it is [Rn]5f06d17s2. 

(iii) (n-1)d level vs. Ns level and (n-2)f level vs. (n-1)d level: 

According to (n + l) rule, for the transition elements the (n-1)d orbitals lies above the ns 

orbital, but with the filling of (n-1)d orbital, its energy become close to ns level and also 

lower down with increase of effective nuclear charge.  

(iv) Half filled and full filled level: The aufbau principle is not obeyed for the system where 

half filled or full filled electronic configuration produces higher stability. 
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Exchange energy (Eex) 

Exchange energy is a quantum mechanical phenomenon which tells that the electrons in an 

orbital (same n and l values) with parallel spin can exchange their positions. More correctly, 

the wave functions associated with them are exchangeable. The configuration having higher 

exchange energy is more stable compared to other configuration with equal number of 

electron. It is measured by the number of sets of two electrons.  

N = xC2 = 
�!

�!(�"�)! = 
�(�"	)

�  and Eex = K[
�(�"	)

� ] 

x = 1       2        3        4        5        6 

                                   Eex (K) = 0        1         3         6         10       15  

configuration Exchange energy configuration Exchange energy 

p2 2C2 = 1K d4 4C2 = 6K 

p3 3C2 =  3K d5 5C2 = 10K 

p4 3C2 + 1C2 = (3 + 0)K = 3K d6 5C2 + 1C2 = (10 + 0)K = 10K  

p5 3C2 + 2C2 = (3 + 1)K = 4K d7 5C2 + 2C2 = (10 + 1)K = 11K 

p6 3C2 + 3C2 = (3 + 3)K = 6K d8 5C2 + 3C2 = (10 + 2)K = 12K 

 

Examples of half filled and full filled configurations: 

Element Expected configuration Actual configuration 

Cr (Z = 24)  [Ar] 3d4 4s2 [Ar] 3d5 4s1 

Mo (Z = 42)  [Kr] 4d4 5s2 [Kr] 4d5 5s1 

Cu (Z = 29)  [Ar] 3d9 4s2 [Ar] 3d10 4s1 

Ag (Z = 47)  [Kr] 4d9 5s2 [Kr] 4d10 5s1 

Au (Z = 79)  [Xe]4f14 5d9 6s2 [Xe]4f14 5d10 6s1 

Pd (Z = 46)  [Kr] 4d8 5s2 [Kr] 4d10 5s0 

Pt (Z = 78)  [Xe]4f14 5d8 6s2 [Xe]4f14 5d9 6s1 

Nb (Z = 41)  [Kr] 4d3 5s2 [Kr] 4d4 5s1 

Ru (Z = 44)  [Kr] 4d6 5s2 [Kr] 4d7 5s1 

Rh (Z = 45)  [Kr] 4d7 5s2 [Kr] 4d8 5s1 

Gd (Z = 64)  [Xe] 4f8 5d0 6s2 [Xe] 4f7 5d1 6s2 

Cm (Z = 96)  [Rn] 5f8 6d0 7s2 [Rn] 5f7 6d1 7s2 
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Hund’s rule of maximum multiplicity: 

(I) Rule of spin multiplicity: Ground state will be determined by the highest spin multiplicity, 

(2S + 1) that means, in degenerate orbitals electrons remains unpaired with parallel spin as 

long as possible. Here, S = Ʃms. 

ml +1 0 -1 
   

             (i) 

ml +1 0 -1 
   

           (ii)                                   

ml +1 0 -1 
   

            (iii) 

ml +1 0 -1 
   

            (iv) 

ml +1 0 -1 
   

            (v) 

According to this rule, only (i) and (v) are allowed for p2 configuration. 

  (II) Rule of orbital multiplicity: With considering maximum spin multiplicity, the ground 

state will be determined by highest possible orbital multiplicity (2L + 1) i.e., the highest 

possible value of L. Generally highest ML (Ʃml) is calculated as ML ranges from +L to –L. 

Now, only arrangement (i) is allowed. 

(III) Rule of J: With considering 1st and 2nd rule, ground state will be determined by J values 

where J = |L + S| to |L − S|. For less than half filled ground state will have lowest J value 

and for more than half filled, the ground state will have highest J values.  

Derivation of ground state term symbol: 

Term symbol represented as:  

 

L value 0 1 2 3 4 5 6 

symbol S P D F G H I 

 

s
1 

configuration: 

     
 
 

S = Σms = ½; Spin multiplicity (2S+1) = [(2 x ½) + 1] = 2 
L = Σml = 0 

J = |L + S| to |L − S| 
J = (0 + ½) to (0 - ½) = ½.  
Therefore, Term symbol for s1 will be 2S1/2. 
s

2 
configuration: 

 
 
 

S = Σms = ½ - ½ = 0. Spin multiplicity (2S+1) = [(2 x 0) + 1] = 1 
L = Σml = 0 

J = |L + S| to |L − S| 
J = (0 + 0) to (0 - 0) = 0.  
Therefore, Term symbol for s2 will be 1S0.  

 ml    0 

 

ml     0 
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p
2 

configuration: 
ml +1 0 -1 

  
 

S = Σms = ½ + ½ = 1. Spin multiplicity (2S+1) = [(2 x 1) + 1] = 3 
L = Σml = 1 + 0 = 1 

J = |L + S| to |L − S| 
J = (1 + 1) to (1 - 1) = 2 to 0 = 2, 1, 0. Since it is less than half filled J will be 0 
Therefore, Term symbol for p2 will be 3P0. 
d

6 
configuration: 

ml +2 +1 0 -1 -2 

     
S = Σms = 4 x ½ = 2. Spin multiplicity (2S+1) = [(2 x 2) + 1] = 5 
L = Σml = (2 x 2) + 1 + 0 – 1 – 2 = 2 

J = |L + S| to |L − S| 
J = (2 + 2) to (2 - 2) = 4 to 0 = 4, 3, 2, 1, 0. Since it is more than half filled J will be 4. 
Therefore, Term symbol for d6 will be 5D4. 
f

9 
configuration: 

ml +3 +2 +1 0 -1 -2 -3 

       
S = Σms = 5 x ½ = 5/2. Spin multiplicity (2S+1) = [(2 x 5/2) + 1] = 6 
L = Σml = (2 x 3) + (2 x 2) + 1 + 0 – 1 – 2 – 3 = 5 

J = |L + S| to |L − S| 
J = (5 + 5/2) to (5 – 5/2) = 15/2 to 5/2. Since it is more than half filled J will be 15/2. 
Therefore, Term symbol for d6 will be 6H15/2. 
 
 
24Cr: [Ar] 4s

1 
3d

5 
configuration: 

 

ml 0 

  
 

ml +2 +1 0 -1 -2 

     
 

 
S = Σms = 6 x ½ = 3. Spin multiplicity (2S+1) = [(2 x 3) + 1] = 7 
L = Σml = 0 + 0 = 0 

J = |L + S| to |L − S| 
J = (3 + 0) to (3 - 0) = 3.  
Therefore, Term symbol of Cr will be 7S3. 
 
23V: [Ar] 4s

2 
3d

3 
configuration: 

 

ml 0 

 
 

ml +2 +1 0 -1 -2 

   
  

 

 
S = Σms = 3 x ½ = 3/2. Spin multiplicity (2S+1) = [(2 x 3/2) + 1] = 4 
L = Σml = 2 + 1 = 3 

J = |L + S| to |L − S| 
J = (3 + 3/2) to (3 – 3/2) = 9/2 to 3/2. Since it is less than half filled J will be 3/2. 
Therefore, Term symbol of Cr will be 4F3/2. 
 



 

Dr. Sachinath Bera Page 33 

 

 
Config. ml values S = Ʃms 2S +1 L = Ʃml J Term symbol 

+3 +2 +1 0 -1 -2 -3      
p1        1/2 2 1 1/2 2P1/2 

p2        1 3 1 0 3P0 

p3        3/2 4 0 3/2 4S3/2 

p4        1 2 1 2 2P2 

p5        1/2 2 1 3/2 2P3/2 

p6        0 1 0 0 1S0 

d1        1/2 2 2 3/2 2D3/2 

d2        1 3 3 2 3F2 

d3        3/2 4 3 3/2 4F3/2 

d4        2 5 2 0 5D0 

d5        5/2 6 0 5/2 6S5/2 

d6        2 5 2 4 5D4 

d7        3/2 4 3 9/2 4F9/2 

d8        1 3 3 4 3F4 

d9        1/2 2 2 5/2 2D5/2 

d10        0 1 0 0 1S0 

f1        1/2 2 3 5/2 2F5/2 

f2        1 3 5 4 3H4 

f3        3/2 4 6 9/2 4I9/2 

f4        2 5 6 4 5I4 

f5        5/2 6 5 5/2 6H5/2 

f6        3 7 3 0 7F0 

f7        7/2 8 0 7/2 8S7/2 

f8        3 7 3 6 7F6 

f9        5/2 6 5 15/2 6H15/2 

f10        2 5 6 8 5I8 

f11        3/2 4 6 15/2 4I15/2 

f12        1 3 5 6 3H6 

f13        1/2 2 3 7/2 2F7/2 

f14        0 1 0 0 1S0 
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Calculate the most probable radius ([��)of 1s orbital of hydrogen. 

We know, Radial wave function (R	E) = 2 (
	
�)B

� e" ­® 

Radial probability function (P4) = 4πR2r2 = 
	�9
�B  r2 e" �­

®   

°±
°� = 0, for maximum value of [��. 

So, 
°±
°� = 

	�9
�B [r2 e" �­

® (− �
 ) + 2r  e" �­

® ] = 
	�9
�B  e" �­

®  [2r − ���
  ] = 0 

→ 2r = ���
   or, r = a = Bohr radius = 0.529 Å. 

 

 

Calculate the most probable radius ([��) of 2s orbital of hydrogen. 

The radial probability distribution (P4) = 4π²�³� r2 i.e., (P4) ∞ [r ²�³]2   

Now, P4 will be maximum when r ²�³ is maximum. So, at most probable radius, 
°

°�[r ²�³] = 0 

Now, ²�³ = 
	

�√9  (
	
�)B

� (2 − �
 ) e" ­

�® 

So, r ²�³ = 
	

�√9  (
	
�)B

� (2r − ��
  ) e" ­

�® 

Therefore, 
°

°�[r ²�³] = 0 = 
	

�√9  (
	
�)B

� [(2 − ��
  ) e" ­

�® − (2r − ��
  ) 	

�  e" ­
�®] 

Or, e" ­
�® [(2 − ��

  )  − 
	

�  (2r − ��
  )] = 0 

Or, [(2 − ��
  )  − 

	
�  (2r − ��

  )] = 0 

Or, 2 - 
F�
   + 

��
� � = 0 

Or, r2 - 6ar + 4a2 = 0 

Or, r2 - 6ar + (2a)2 = 0 

So, [� � = 
" ("� ) ± {("� )�"�.	.� �

�.	   [r = 
"µ ± √µ�"� e

�  ] 

Or, [� � = 
�  ± √F� �"	� �

�  = 
�  ± √�� �

�  = (3 ± √5)a = 0.7a or 5.3a 

Therefore, the most probable radius of 2s will be 5.3a. 


