PSO, PO, CO

Department of Physics

Programme Specific Outcome of BSc Physics Programme

- **PSO1:** Understand and apply the principles of Classical mechanics, Quantum mechanics, Thermodynamics & Statistical Mechanics, Nuclear physics and Electrodynamics
- **PSO 2:** Understand and apply the principles of Solid state physics, Optics, Photonics and Spectroscopy, Nanomaterials.
- **PSO 3:** Understand the principles of Electronics, Design and test electronic circuits and their application in communication system.
- **PSO 4:** Understand and apply the principles of Mathematical Physics and Computational Physics and do Error analysis in measurements.

These program-specific outcomes aim to equip Physics Honors students with a strong foundation in theoretical and experimental physics, as well as critical thinking and research skills necessary for further studies or careers in academia, industry, or other scientific fields.

Programme Outcomes (PO)

- PO1: Demonstrate a comprehensive understanding of fundamental principles and theories in classical mechanics, Statistical Mechanics, electromagnetism, thermodynamics, quantum mechanics, and relativity, Nanomaterials, Electronics and communication.
- PO2: Design and conduct sophisticated experiments, utilizing a range of laboratory equipment and techniques, to investigate physical phenomena and validate theoretical models and effectively communicate the results through oral presentations and written reports.
- PO3: Demonstrate proficiency in using computer programming languages and numerical simulation tools to model physical systems and simulate experimental outcomes.
- PO4: Apply critical thinking and problem-solving skills to identify, analyse, and solve complex physics problems, both independently and collaboratively, using appropriate theoretical frameworks and experimental techniques.
- PO5: Develop a deep understanding of the interconnections between different branches of physics and their applications in other scientific disciplines and realworld contexts.
- PO 6: Demonstrate knowledge of current research trends and recent advancements in physics, and critically evaluate scientific literature to stay abreast of developments in the field

- PO 7: Exhibit ethical conduct in scientific research, including responsible data handling, adherence to safety protocols, and consideration of the societal impact of physics research and technology.
- ✤ PO 8: Cultivate effective communication and teamwork skills by actively participating in group projects, discussions, and scientific presentations, and engaging with diverse perspectives within the field of physics.

Courses Outcomes (COs)

Semester-I		
CC1	Mathematical Physics I	CO 1: Understand the concept of Calculus.CO 2: Develop the knowledge of vector.CO 2: Understand the Probability theory and apply it in physical problem.CO 3: Develop the concept of Curvilinear coordinate system.
CC2	Mechanics	CO 4: Develop the knowledge of Mechanics as an introductory course that explores the fundamental principles and applications of classical mechanics like, kinematics. CO 5: Understand the concept of Newton's laws of motion, forces, energy, momentum, rotational motion, and gravitation, special theory of relativity. CO 6: Determine the mathematical concept, laboratory experiments, and problem-solving exercises. Students will develop a solid understanding of the laws that govern the motion of objects and systems.
		Semester-II
CC3	Electricity and Magnetism	CO 7: Electricity and Magnetism is an introductory and a very important course that explores the fundamental principles and applications of electromagnetic phenomena. Through theoretical study, mathematical analysis, laboratory experiments, and problem-solving exercises, students will develop a strong mathematical and analytical skills, as well as experimental and problem-solving abilities in the context of electricity and magnetism. CO 8: Students gain an appropriate knowledge for the practical applications of electromagnetic principles in various scientific and engineering disciplines.
CC4	Waves and Optics	CO 9: Waves and Optics is a comprehensive course that explores the principles and applications of wave phenomena and optics. This course covers topics such as wave properties, wave propagation, interference, diffraction, polarization, and the behaviour of light. CO 10: Through theoretical study, mathematical analysis, laboratory experiments, and problem-solving exercises, students will develop a solid understanding of wave mechanics and optical phenomena

GE2	Thermal Physics and Statistical Mechanics	 CO 11: Thermal Physics and Statistical Mechanics is a special course that combines the principles of thermal physics with the concepts of statistical mechanics. This course covers topics such as laws of thermodynamics, kinetic theory of gases, heat transfer mechanisms, statistical distributions, and equilibrium statistical mechanics. CO 12: Through theoretical study, mathematical analysis, and problem-solving exercises, students will develop a comprehensive understanding of the behaviour of thermal systems at both macroscopic and microscopic levels.
	1	Semester-III
CC5	Mathematical Physics II	CO 13: Upon successful completion of this course, students will be equipped with a comprehensive understanding of various mathematical techniques commonly used in physics. Specifically, they will be able to learn and analyse Fourier Series, Understand the Frobenius method and its significance in solving differential equations with regular singular points, Grasp the concepts of Beta and Gamma Functions, Comprehend the principles of variational calculus and its role in solving optimization problems in physics.
CC6	Thermal Physics	CO 14: This course covers topics such as laws of thermodynamics, kinetic theory of gases, heat transfer mechanisms, and statistical mechanics. Through theoretical study, mathematical analysis, and problem-solving exercises, students will develop a deep understanding of thermal phenomena and their implications in various scientific and engineering disciplines.
CC7	Digital Systems and Applications	 CO 15: This course covers topics such as digital logic gates, Boolean algebra, combinational and sequential circuits, digital arithmetic, memory systems, and digital system design. CO 16: By the end of this course, students will have a solid understanding of digital systems and their applications. They will be able to design and analyse digital circuits using various techniques and tools. Students will also gain practical skills in digital system implementation and troubleshooting. They will develop problem-solving and critical thinking abilities in the context of digital systems and be prepared to apply their knowledge in various technological domains.
SEC 1	Electrical Circuits and Network Skills	 CO 17: This course covers topics such as circuit elements, Ohm's law, Kirchhoff's laws, network theorems, transient analysis, and frequency response. CO 18: Through theoretical study, problem-solving exercises, and hands-on experiments, students will develop a strong foundation in electrical circuits and acquire essential skills for circuit analysis and design.

GE3	Solid State Physics	CO 19: This course covers topics such as crystal structures,
		electronic band theory, lattice vibrations, electrical and
		thermal properties of solids, magnetism, and semiconductor
		physics. Through theoretical study, mathematical analysis,
		and laboratory experiments, students will develop a deep
		understanding of the behaviour of solids and their
		technological applications.
	Γ	Semester-IV
CC8	Mathematical	CO 20.1 : After completing this course, students will
	Physics III	possess a strong foundation in advanced mathematics
		relevant to engineering. They will be able to employ
		complex analysis to understand and solve problems
		involving complex variables, utilize integral transforms to
		effectively work with matrices and eigenvalues to model
		and solve various engineering scenarios
		CO 20.2: will equip them with the necessary mathematical
		tools to address complex engineering challenges and excel
		in their respective fields of study and future careers.
CC9	Elements of Modern	CO 21.1: This course covers topics such as quantum
	Physics	mechanics, special relativity, atomic and nuclear physics,
		particle physics, and the basics of condensed matter
		physics. By the end of this course, students will have a
		solid foundation in the principles and applications of
		CO 21 2. Students will also gain an introductory
		understanding of condensed matter physics. They will
		develop problem-solving and analytical skills through
		theoretical study and laboratory experiments.
CC10	Analog Systems and	CO 22.1: Analog Systems and Applications is an in-depth
	Applications	course that focuses on the principles, design, and
		applications of analog electronic systems. This course
		covers topics such as analog signal processing, amplifiers,
		and practical circuit design techniques
		CO 22.2: Through theoretical study, practical applications.
		and hands-on projects, students will develop a strong
		understanding of analog electronic systems and their
		diverse applications in various fields.
SEC B	Renewable Energy &	CO 23: This course covers topics such as solar energy,
	Energy Harvesting	wind energy, hydroelectric power, biomass energy, and
		emerging technologies for energy harvesting. Through
		theoretical study, practical applications, and case studies,
		students will develop a deep understanding of renewable
		in sustainable energy production
GE4	Digital, Analog	CO 24.1: Students will have a solid understanding of
	Circuits and	digital and analog circuits, as well as instrumentation
	Instrumentation	techniques.
		CO 24.2: They will be able to design, analyse, and
		troubleshoot electronic circuits, including both digital and
		analog components. Students will also gain practical skills
		through hands-on laboratory.
Semester-V		

0014	Quantum	CO 24.1. Studente will have a communication
CC11	Quantum	CO 24.1: Students will have a comprehensive
		applications. They will be able to analyze quantum systems
	applications	applications. They will be able to analyse quantum systems,
		Additionally students will gain knowledge of quantum
		applications in various fields such as atomic physics
		condensed matter physics and quantum information
		CO 24.2: Students, will also get knowledge about, practical
		skills through problem-solving data analysis and research
		projects and be able to effectively communicate scientific
		ideas in the field of quantum mechanics
CC12	Solid State Physics	CO 25.1: In this course students will have a
	Solid State Thysics	comprehensive understanding of solid state physics
		principles and applications. They will be able to analyse the
		electronic, magnetic, and optical properties of solid
		materials and understand the behaviour of electrons and
		lattice vibrations in crystalline structures.
		CO 25.2: Students will also gain practical skills through
		laboratory experiments and develop the ability to
		effectively communicate and present scientific ideas in the
		field of solid state physics.
DSE1	Advanced	CO 26.1: This is an advanced and a very useful course for
	Mathematical	students for future study. After this course Students will
	Physics - I	gain a strong foundation in tensor analysis and linear vector
		spaces, equipping them with essential mathematical tools to
		tackle complex problems in various scientific and
		engineering domains. They will be able to work with
		tensors, understand their geometric and physical
		interpretations, and use tensor calculus to solve real-world
		problems.
		CO 26.2: This course will prepare students for advanced
		studies and research in fields where tensor analysis is
		crucial, as well as enhance their analytical and problem-
		solving skills in a wide range of disciplines.
DSE2	Nuclear and Particle	CO 27.1: By the end of this course, students will have the
	Physics	understanding of nuclear and particle physics principles and
		applications. They will be able to learn nuclear structure,
		students will gain knowledge of elementary particles their
		interactions, and the Standard Model of particle physics
		CO 27.2: They will also develop practical skills through
		data analysis and research projects and be able to
		effectively communicate scientific ideas in the field of
		nuclear and particle physics
		Somestor-VI
	Electromo creatio	Semester-vi
CC13	Theory	base a solid understanding of electromagnetic theory and
	meory	its applications. They will be able to analyse and solve
		problems related to electric and magnetic fields
		electromagnetic wayes and Maxwell's equations
		CO 27.2: Students will also gain practical skills in applying
		electromagnetic theory to real-world applications. such as
		antenna design, transmission

CC14	Statistical	CO 28.1: Statistical mechanics is one of the most
0011	Mechanics	important theoretical courses. By the end of this course,
		students will have a solid foundation in statistical
		mechanics and the ability describe the behaviour of
		physical systems at a microscopic level.
		CO 28.2: They will be equipped with the skills to apply
		statistical mechanics to a wide range of problems, both
		theoretical and experimental, and understand the underlying
		principles that govern the behaviour of matter.
DSE3	Communication	CO 29.1: This course will give a solid understanding of
	Electronics (Theory)	communication electronics principles and techniques.
		Students will be able to design, analyse, and evaluate
		electronic circuits and systems for communication
		applications.
		CO 29.2: Students will also have some advanced level
	OR	knowledge on analog and digital modulation techniques
		and some basic ideas of satellite communication and
		mobile telephony systems by the end of this course.
	Nano Materials and	
	Applications	CO 30.1: This course will give a solid understanding of
		Nanoscale Systems, Synthesis of Nanostructure Materials,
		Different characteristic of nanomaterial specially optical
		CO 20 2: Studente will also gain knowledge about prostice
		co 30.2: Students will also gain knowledge about practical
		thin films for photonic devices (LED olar cells). They also
		able to Synthesis of metal nanoparticles by chemical route
		Synthesis of semiconductor nanoparticles. Surface Plasmon
		study of metal nanoparticles by UV-Visible
		spectrophotometer XRD pattern of panomaterials and
		estimation of particle size
	Digital Signal	CO 31.1: By the end of this course students will have a
D3E4	Processing	solid understanding of digital signal processing theory.
	Trocessing	techniques, and applications. They will be able to analyse
		and process digital signals using various transformation and
		filtering techniques.
		CO 33.2: Students will also gain practical experience
		through programming exercises and laboratory
		experiments, enabling them to apply DSP algorithms to
		real-world signals and effectively communicate their
		findings.